Vorticity generation in large-scale structure caustics
نویسنده
چکیده
A fundamental hypothesis for the interpretation of the measured large-scale line-of-sight peculiar velocities of galaxies is that the large-scale cosmic flows are irrotational. In order to assess the validity of this assumption, we estimate, within the frame of the gravitational instability scenario, the amount of vorticity generated after the first shell crossings in large-scale caustics. In the Zel’dovich approximation the first emerging singularities form sheet like structures. Here we compute the expectation profile of an initial overdensity under the constraint that it goes through its first shell crossing at the present time. We find that this profile corresponds to rather oblate structures in Lagrangian space. Assuming the Zel’dovich approximation is still adequate not only at the first stages of the evolution but also slightly after the first shell crossing, we calculate the size and shape of those caustics and their vorticity content as a function of time and for different cosmologies. The average vorticity created in these caustics is small: of the order of one (in units of the Hubble constant). To illustrate this point we compute the contribution of such caustics to the probability distribution function of the filtered vorticity at large scales. We find that this contribution that this yields a negligible contribution at the 10 to 15 h−1Mpc scales. It becomes significant only at the scales of 3 to 4 h−1Mpc, that is, slightly above the galaxy cluster scales.
منابع مشابه
Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کاملThe Protogalactic Origin for Cosmic Magnetic Fields 7
It is demonstrated that strong magnetic elds are produced from a zero initial magnetic eld during the pregalactic era, when galaxies are rst forming. Their development proceeds in three phases. In the rst phase, weak magnetic elds are created by the Biermann battery mechanism, acting in shocked parts of the intergalactic medium where caustics form and intersect. In the second phase, these weak ...
متن کاملGeneration Scheduling in Large-Scale Power Systems with Wind Farms Using MICA
The growth in demand for electric power and the rapid increase in fuel costs, in whole of theworld need to discover new energy resources for electricity production. Among of the nonconventionalresources, wind and solar energy, is known as the most promising deviceselectricity production in the future. In this thesis, we study follows to long-term generationscheduling of power systems in the pre...
متن کاملGeneration of large-scale vorticity in a homogeneous turbulence with a mean velocity shear.
An effect of a mean velocity shear on a turbulence and on the effective force which is determined by the gradient of the Reynolds stresses is studied. Generation of a mean vorticity in a homogeneous incompressible nonhelical turbulent flow with an imposed mean velocity shear due to an excitation of a large-scale instability is found. The instability is caused by a combined effect of the large-s...
متن کاملNew mechanism of generation of large-scale magnetic fields in merging protogalactic and protostellar clouds
A new mechanism of generation of large-scale magnetic fields in colliding protogalactic clouds and merging protostellar clouds is discussed. Interaction of the colliding clouds produces large-scale shear motions which are superimposed on small-scale turbulence. Generation of the large-scale magnetic field is due to a ”shear-current” effect (or ”vorticity-current” effect), and the mean vorticity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998